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Chapter 3
Glutathione and Transsulfuration  
in Alcohol-Associated Tissue Injury 
and Carcinogenesis

Ying Chen, Ming Han, Akiko Matsumoto, Yewei Wang,  
David C. Thompson, and Vasilis Vasiliou

Abstract  Glutathione (GSH) is the most abundant non-protein thiol, attaining cel-
lular concentrations in the millimolar range. GSH functions to protect cells against 
endogenous and exogenous electrophiles. In addition, GSH serves as a cofactor for 
the GSH peroxidase family of enzymes which metabolize H2O2 as well as lipid 
peroxides. Through the action of glutathione S-transferase family of enzymes, GSH 
is conjugated to a variety of electrophilic endogenous compounds and exogenous 
chemicals, and thereby facilitates their efficient and safe elimination. Through the 
transsulfuration pathway, GSH biosynthesis is metabolically linked with cellular 
methylation, which is pivotal for epigenetic gene regulation. Accumulating evi-
dence suggests that the underlying mechanisms of alcohol-associated tissue injury 
and carcinogenesis involve: (i) generation of the electrophilic metabolite acetalde-
hyde, (ii) induction of CYP2E1 leading to the formation of reactive oxygen species 
and pro-carcinogen activation, and (iii) nutritional deficiencies, such as methyl 
groups, resulting in enhanced susceptibility to cancer development. In this context, 
clinical and experimental investigations suggest an intimate involvement of GSH 
and related enzymes in the development of alcohol-induced pathological conditions. 
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The aim of this review is to provide an overview of the GSH biosynthesis, cellular 
transsulfuration/transmethylation pathways, and their implications in the pathogen-
esis and treatment of alcohol-related disease and cancer.

Keywords  Alcoholic · Cancer · Oxidative stress · Glutathione · Transsulfuration · 
Methylation

3.1  �Introduction

Glutathione (GSH) is a ubiquitous tripeptide composed of glutamate, cysteine and 
glycine. It presents as the most prevalent non-protein thiol in mammalian cells. 
Extensive research has revealed numerous and diverse cellular functions of GSH 
[1]. It detoxifies xenobiotics and endogenous metabolites through non-enzymatic or 
enzymatic mechanisms. It functions as a major antioxidant to protect cells against 
oxidative damage caused by reactive oxygen species (ROS). As such, it is essential 
in maintaining the intracellular redox balance and the thiol moieties of proteins. 
Through such processes, GSH can modulate protein function via redox post-
translational modification. It also plays a role in the regulation of nitric oxide 
homeostasis. Through the transsulfuration pathway, GSH participates in cellular 
shuttling of other sulfur amino acids [2]. Given the diversity and importance of 
these functions of GSH, it should come as no surprise that alterations in GSH levels 
have been found to be associated with numerous human pathological conditions, 
including cancer, liver disease, cardiovascular disease, neurological disorders, dia-
betes, and other disease conditions [3].

Oxidative stress occurs when ROS are produced at levels exceeding those 
capable of being sequestered by normal cellular antioxidant processes. Chronic 
ethanol consumption induces oxidative stress in organs via cellular pathways 
that promote the overproduction of reactive molecules (including ROS and elec-
trophilic products, such as acetaldehyde and lipid peroxidation-derived products) 
and/or the diminution of antioxidant defenses, such as GSH [4]. Studies in human 
subjects and animal models have implicated an important mechanistic role for 
disrupted GSH homeostasis in the pathogenesis of alcohol-related non-cancer-
ous diseases, particularly alcoholic liver disease [5]. The involvement of changes 
in the GSH redox homeostasis in alcohol-associated cancers, however, appears 
more complex and remains to be elucidated. This review focuses on the links 
between GSH, the transsulfuration pathway, and alcohol-induced tissue injury, 
and their involvement in the development and therapy of alcohol-related 
cancers.
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3.2  �GSH Biosynthesis, Metabolism and Function

GSH is synthesized by two successive enzymatic reactions (Fig. 3.1) [6]. The first 
reaction, catalyzed by glutamate-cysteine ligase (GCL), couples glutamate and cys-
teine to form γ-glutamylcysteine (γ-GC). The second reaction couples γ-GC with 
glycine and is catalyzed by GSH synthase (GSS). Each of these enzymatic reactions 
consumes one molecule of ATP per catalytic cycle. The formation of γ-GC by GCL 
is considered the rate-limiting enzymatic step in GSH biosynthesis. For this reason, 
GCL rather than GSS has been the principal target of drugs designed to inhibit GSH 
biosynthesis [7] and to generate animal models with GSH deficiency [8]. GCL of 
higher eukaryotic organisms, in its most catalytically efficient form, is a heterodi-
mer composed of a catalytic (GCLC) and a modifier (GCLM) subunit, each of 
which is encoded by separate genes. As its name implies, GCLC possesses all of the 
catalytic activity of GCL, and GCLM serves to optimize the kinetic properties of 
GCLC [9]. Both the GCLC and GCLM genes are up-regulated by electrophiles or 
agents that cause oxidant stress [10] via transcriptional mechanisms reminiscent of 
phase II drug metabolizing-enzyme genes. While GCLC and GCLM genes are com-
monly found up-regulated together, cell type-specific differential expression of 

Fig. 3.1  Scheme of γ–glutamyl cycle for glutathione (GSH) biosynthesis and catabolism. 
GSH is synthesized by two successive enzymatic reactions. Glutamate-cysteine ligase (GCL) cou-
ples glutamate (Glu) and cysteine (Cys) to form γ-glutamylcysteine (γ-GC), which is the rate-
limiting step in GSH synthesis. GSH synthase (GSS) then couples γ-GC with glycine to form 
GSH. GSH can be transported out of the cell where it is catabolized by γ-glutamyl transferase 
(GGT). GGT cleaves the γ-glutamyl amide bond between Glu and Cys releasing cysteinylglycine 
(Cys-Gly) and γ–glutamyl amino acids. Cys-Gly can be further cleaved by an extracellular dipep-
tidase (DP), producing free Cys and Gly for reuse by the cell. γ–glutamyl amino acids can be taken 
up by the cell to form γ-GC, essentially bypassing the need for catalysis by GCL
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GCLC and GCLM transcripts suggest independent regulation of these subunits [8]. 
Current evidence indicates that most, if not all, of the GSH biosynthetic activity 
resides in the cytoplasm [11]. The GSH, thus produced, is further distributed into 
intracellular organelles including the mitochondria, endoplasmic reticulum (ER) 
and nuclei [12].

Due to the presence of a unique γ-glutamyl amide bond between the γ-carbon of 
the glutamate side chain and the amino group of cysteine, GSH cannot be broken 
down by peptidases inside the cell. Rather, GSH must be transported through the 
plasma membrane and out of the cell, where it is metabolized by γ-glutamyl trans-
ferases [GGTs] [6]. These enzymes catalyze the ATP-dependent cleavage of the 
γ-glutamyl amide bond between glutamate and cysteine, and generates cysteinylg-
lycine that can be further cleaved by an extracellular dipeptidase (DP). This reaction 
produces free cysteine and glycine, which can then be used by cells. These reactions 
for synthesis and degradation of GSH form a metabolic pathway known as the 
γ-glutamyl cycle [13] (Fig. 3.1). By way of this cycle, GSH participates in amino 
acid transport for cellular re-synthesis of GSH and other proteins. In addition, it 
represents a salvage pathway by which GSH can be produced independently of 
GCL [14].

GSH is the most abundant cellular thiol, attaining concentrations from 1 to 
10 mM depending on the cell type [11, 15, 16]. The oxidized form of GSH is gluta-
thione disulfide (GSSG). The cellular GSH/GSSG ratio has been used as an index 
of cellular redox status. Under normal circumstances, this ratio exceeds 10:1; a 
decrease in GSH/GSSG ratio is commonly associated with increased cellular oxida-
tive stress [17]. GSH serves to protect cells against toxicity arising from exposure to 
excessive amounts of endogenous and exogenous electrophiles [7]. It scavenges 
hydroxyl radical and superoxide directly, and serves as a cofactor for the glutathione 
peroxidase (GPX) enzymes in metabolizing H2O2, as well as lipid peroxides [18]. 
Through the action of the glutathione S-transferase (GST) family of enzymes, GSH 
may be conjugated to a variety of electrophilic endogenous compounds and exoge-
nous chemicals, and thereby facilitates their efficient and safe elimination [19]. 
Together, GSH and GSSG function as an important cellular redox buffering system 
that has been suggested to be involved in determining cell fate decisions, such as 
proliferation and apoptosis [20].

In subcellular compartments, GSH plays a pivotal role in the normal function-
ing of mitochondria, where oxygen consumption and generation of ROS occurs. 
GSH in the nucleus maintains the redox status of critical protein sulfhydryl 
groups that are necessary for expression, transcription activity, and DNA repair 
[21]. In contrast to other organelles, GSH in the endoplasmic reticulum exists 
more in the oxidized state (GSSG), which is believed to be necessary for 
providing the appropriate environment for assembly and secretory pathways for 
proteins [22].
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3.3  �The Transsulfuration Pathway

Transsulfuration is a biochemical pathway that connects glutathione biosynthesis to 
the metabolism of sulfur-containing amino acids, viz., methionine and cysteine 
(Fig. 3.2) [23]. In the methionine cycle, methionine forms S-adenosylmethionine 
(SAM) in a reaction catalyzed by methionine adenosyltransferase (MAT). SAM is 
converted to S-adenosylhomocysteine (SAH) by the actions of methyltransferases 
(MTs), which transfer the methyl group to accepting molecules. Homocysteine is 
then derived from SAH via a reversible reaction catalyzed by SAH hydrolase 
(SAHH). Methionine can be regenerated from homocysteine by one of two meth-
ylation pathways. In the first, methionine synthase (MS) catalyzes the transfer of a 

Fig. 3.2  Major enzymes and intermediates in cellular transmethylation-transsulfuration 
pathways. In the liver, the transsulfuration pathway connects transmethylation cycle (methionine 
cycle) to glutathione (GSH) biosynthesis. Methionine forms S-adenosylmethionine (SAM), the 
major biological methyl donor, by the action of methionine adenosyltransferase (MAT). SAM is 
then converted to S-adenosylhomocysteine (SAH) by the actions of various methyltransferases 
(MTs). These MTs transfer the methyl group to accepting molecules (e.g., DNA, RNA and pro-
teins) undergoing methylation. Homocysteine is derived from the hydrolysis of SAH by the action 
of SAH hydrolase (SAHH). In the methionine cycle, methionine can be regenerated from homo-
cysteine by one of two remethylation pathways. In one pathway (1), methionine synthase (MS) 
catalyzes the transfer of a methyl group from N5-methyltetrahydrofolate (MTHF) to homocysteine 
creating methionine and tetrahydrofolate (THF); this reaction requires vitamin B12 (B12) as a 
cofactor. In the other pathway (2), betaine is the source of the methyl group transferred to homo-
cysteine, which is catalyzed by a zinc (Zn)-dependent enzyme, betaine homocysteine methyltrans-
ferase (BHMT). The transsulfuration pathway starts with homocysteine being irreversibly 
converted to cystathionine by the enzyme cystathionine-β-synthase (CBS). Cystathionine is further 
converted to cysteine by cystathionine-γ-lyase (CL). Cysteine can then feed GSH biosynthesis
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methyl group from N5-methyltetrahydrofolate (MTHF) to homocysteine creating 
methionine and tetrahydrofolate (THF); this reaction requires vitamin B12 as a 
cofactor. In the second pathway, betaine serves as the source of the methyl group 
transferred to homocysteine, a reaction catalyzed by the zinc-dependent enzyme 
betaine homocysteine methyltransferase (BHMT). The transsulfuration pathway 
involves homocysteine being irreversibly converted to cystathionine by the enzyme 
cystathionine-β-synthase (CBS). Cystathionine is converted to cysteine by 
cystathionine-γ-lyase (CL). The resulting cysteine can then be used for GSH bio-
synthesis. In the liver, approximately 50% of the cysteine used for GSH synthesis is 
derived from the transsulfuration pathway from methionine [24, 25].

The functional importance of these metabolic pathways is underscored by 
their essentiality for cellular methylation and for the maintenance of cellular 
redox homeostasis. The intermediate, SAM, serves as a primary methyl donor 
participating in epigenetic gene regulation, protein stability, and phospholipid 
and neurotransmitter production [26]. Through the transsulfuration pathway, 
SAM has been shown to increase GSH, inhibit lipid peroxidation, and protect 
against oxidative stress associated with ischemia-reperfusion injury in brain tis-
sues [27]. Deficiencies in enzymes of the transsulfuration pathway may lead to 
ROS generation, homocysteine accumulation and macrophage synthesis of proin-
flammatory molecules, and thereby contribute to human pathologies like athero-
sclerosis and tumor development [23]. Homocysteine accumulation induces fibrin 
deposition, oxidant stress, cytokine release and inflammation, promoting athero-
sclerosis [28].

3.4  �Glutathione and Transsulfuration in Alcohol-Related 
Non-Cancerous Diseases

Alcohol consumption can cause a variety of health issues. Heavy drinking is asso-
ciated with numerous non-cancerous health conditions, including liver disease, 
cardiovascular disease, disorders of the digestive tract, pulmonary disease, and 
neurobehavioral disorders. Oxidative stress appears to be intimately involved in 
the initiation and progression of these diseases [4]. Alcohol consumption induces 
oxidative stress through a variety of cellular changes; an important one involves 
compromised cellular antioxidant defense mechanisms including alterations in 
GSH [4]. GSH levels and/or its redox status (e.g., GSH/GSSG ratio) in the plasma 
and tissues from ethanol-fed animals and chronic alcoholics have been investi-
gated in numerous studies. In rodents, chronic ethanol consumption caused 
decreases in heart cytosolic and mitochondrial GSH levels and concomitant 
increases in cytosolic and mitochondrial levels of lipid peroxidation and protein 
carbonyls; such compromised oxidant buffering capacity has been proposed to 
contribute to the pathogenesis of alcoholic cardiomyopathy [29]. The impact of 
chronic alcoholism on systemic and pulmonary GSH redox status was investigated 
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in a cohort comprising healthy alcohol-dependent subjects and control subjects 
[30]. Chronic alcoholics showed dramatic oxidant stress in the alveolar space 
manifesting as decreased GSH, increased GSSG, and a corresponding oxidative 
shift in the redox potential of GSH/GSSG. Systemic oxidative stress was observed 
in alcoholics who also smoked. Interestingly, alcohol-induced chronic oxidant 
stress in the alveolar space may sensitize alcohol abusers to acute respiratory dis-
tress syndrome [31].

The liver is a major organ subject to ethanol-induced toxicity. There is a wealth 
of data from studies in human and experimental animals documenting ethanol-
induced changes in hepatic GSH homeostasis, including GSH/GSSG and GSH-
related antioxidant enzymes [32–35]. Collectively, these studies suggest that 
depletion of hepatic GSH, particularly mitochondrial GSH, is one of the early 
changes associated with chronic ethanol consumption [36]. Importantly, plasma 
GSH concentrations are inversely correlated with the degree of liver damage and 
hepatic lipid peroxidation [32–34]. Prolonged ethanol consumption has been 
reported to inhibit multiple steps in methionine metabolism and transsulfuration 
pathways in the liver, resulting in increased homocysteine and SAH levels, and a 
lowered heptaic SAM/SAH ratio [37, 38]. Enzymes affected directly or indirectly 
by ethanol include MAT, BHMT and various methytransferases [37, 39]. The detri-
mental consequences of these changes include, but are not limited to, dysregulation 
of gene expression (due to altered DNA methylation), homocysteine-promoted 
inflammation, and inhibition of GSH biosynthesis [37, 39]. Importantly, serum lev-
els of intermediates of the transsulfuration pathway (such as cystathionine) have 
been proposed as diagnostic markers for the severity of alcoholic liver disease 
(ALD) [40].

In a recent study, we utilized a transgenic mouse model to elucidate the role of 
GSH redox homeostasis in the hepatic response to chronic ethanol consumption 
[41]. Global disruption of the Gclm gene (GCLM knockout) results in mice that 
have greatly reduced (10–40% normal) tissue GSH and lower plasma GSH/GSSG 
[42]. In the liver, 85% depletion of GSH results in an oxidative shift of hepatic 
GSH redox potential by 65 mV, 60% decrease in mitochondrial GSH pool and yet 
mitochondrial functioning remains intact [43]. Thus, GCLM knockout (KO) mice 
represent a model of chronic hepatic and systemic oxidative stress. Following 
chronic ethanol consumption, these mice are unexpectedly protected from etha-
nol-induced steatosis and liver damage [41]. At the molecular level, this protective 
phenotype appears to involve following beneficial cellular adaptions: (i) suppres-
sion of lipogenic genes and induction of genes involved in fatty acid oxidation, (ii) 
induction of the nuclear-factor-erythroid 2–related-factor 2 (NRF2) antioxidant 
response, and (iii) activation of the AMP-activated protein kinase (AMPK) meta-
bolic signaling pathway [41]. Our study showed unconventional beneficial cellu-
lar consequences associated with GSH deficiency, implying that hepatic GSH 
homeostasis may function to modulate metabolic and stress responses to ethanol 
consumption.
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3.5  �Alcohol-Mediated Carcinogenesis

Ethanol and its direct metabolite acetaldehyde have been identified as human car-
cinogens by the International Agency for Research on Cancer (IARC). Available 
epidemiological studies have established that alcohol consumption is strongly asso-
ciated with an increased risk for cancers of stomach, oropharynx, larynx, oesopha-
gus, head and neck, liver, pancreas, female breast, colorectum, and gallbladder 
[44–46]. In this context, alcohol is estimated to have contributed to 3.2–3.7% and 
5.8% of cancer deaths worldwide and in the United States, respectively [47].

Drinking patterns play an important role in influencing the relationship between 
alcohol and cancer risk. An increased risk of breast cancer is associated with 
chronic alcohol consumption and it occurs in a dose-dependent manner [48, 49]. 
Consumption of 10 g alcohol each day raises the risk by 8% for post-menopausal 
breast cancer, 9% for pre-menopausal breast cancer, and 10% for overall breast 
cancer [49]; risk increases by ≈7% for every additional 10 g alcohol consumed 
each day [49]. A dose-dependent association also exists between lifetime alcohol 
intake and the risk of upper-aero digestive tract (UADT) cancer (e.g., of the oral 
cavity, pharynx, larynx or oesophagus) (multivariable-adjusted relative risk was 
2.67 for an intake of ≥40 g/day, and 1.16 for a 10 g/day increment in intake) [50]. 
For the lower digestive tract, longer duration and higher amount of alcohol con-
sumption were associated with increased colorectal cancer risk (relative risk was 
2.24 for ≥30 g/day) [51–54]. While the main causal factor of hepatocellular car-
cinoma (HCC) is chronic infection with hepatitis B (HBV) and C (HCV) viruses, 
alcohol intake represents an independent risk factor for HCC [55, 56]. Chronic 
ethanol consumption can cause a spectrum of ALDs, which clinically can mani-
fest as steatosis, steatohepatitis, fibrosis, and cirrhosis [57]. Only ≈1~2% of cir-
rhotic patients develop HCC [58]. Daily alcohol ingestion exceeding 20.44 g was 
associated with higher risks of both liver cancer occurring and liver disease mor-
tality [59]. The dose-response relationship between alcohol consumption and 
liver cancer was apparent with relative risks of 1.54 for 50 g/day, 2.14 for 75 g/
day, 3.21 for 100 g/day, and 5.20 for 125 g/day [60]. It should be noted that a 
J-shaped dose-response relationship between alcohol consumption and all-cause 
or all-cancer mortality was observed, implicating a possible beneficial effect of 
light drinking [61–63].

The exact molecular mechanisms causing alcohol-associated carcinogenesis are 
not well understood. Several have been proposed and are reviewed in depth else-
where [58, 64, 65]. Alcohol is thought to exert carcinogenic effects at many levels, 
including acetaldehyde formation, induction of CYP2E1, oxidative stress, epigen-
etic alterations due to a reduced capacity for methyl moiety transfer, and modula-
tion of cellular growth [58]. Alcohol is metabolized primarily via oxidation to 
acetaldehyde through the actions of alcohol dehydrogenases (ADHs) and, to a 
lesser extent, CYP2E1 and catalase. Acetaldehyde is then oxidatively detoxified to 
acetate by the aldehyde dehydrogenase enzymes (ALDHs) [66]. Acetaldehyde is a 
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highly reactive molecule capable of adducting DNA and proteins [67, 68]. 
Mitochondrial ALDH2 is the primary ALDH enzyme responsible for the elimina-
tion of acetaldehyde [69]. Human subjects carrying a defective allele of the ALDH2 
gene (ALDH2*2 allele) have a greatly reduced capacity (10–45% normal in hetero-
zygotes and 1–5% normal in homozygotes) to metabolize acetaldehyde [70]. 
Epidemiological studies have revealed these individuals to be highly susceptible to 
the development of gastrointestinal cancers following excessive alcohol consump-
tion [71]. Following chronic ethanol consumption, acetaldehyde-DNA adducts are 
elevated to a greater extent in the liver and stomach of Aldh2 KO mice than in wild-
type mice [72, 73]. Studies in humans and experimental animals have established 
that acetaldehyde-DNA adduct formation is an initial step in ethanol-induced carci-
nogenesis [74]. Alcohol induction of CYP2E1 serves as an important molecular 
pathway by which ethanol can promote carcinogenicity [65]. Specifically, CYP2E1 
activation may bioactivate other procarcinogens and is an important cellular source 
of ROS formation, including superoxide anion, hydrogen peroxide and the lipid 
peroxidation by-products malondialdehyde and 4-hydroxynonenal (4-HNE) [65]. 
4-HNE can form highly mutagenic DNA-adducts; such adducts are more frequently 
observed in advanced stages of ALD [75, 76]. In addition to CYP2E1 activation, 
ethanol-induced oxidative stress can arise from dysfunctional mitochondrial respi-
ration, iron overload, inflammation and/or compromised antioxidant defenses [77]. 
The epigenetic aspect of alcohol-induced carcinogenesis has been the subject of 
extensive studies in recent years and is covered in comprehensive reviews else-
where [78, 79]. Accumulating lines of evidence suggest that ethanol consumption 
causes aberrant patterns of DNA methylation and thereby altered gene expression 
by inhibiting key enzymes involved in SAM bioavailability and DNA methyltrans-
ferases [79]. Finally, chronic ethanol consumption lowers hepatic concentrations of 
vitamin A and retinoic acid, which are critical modulators of cellular growth and 
differentiation. Importantly, an apparent inverse relationship appears to exist 
between serum concentrations of vitamin A and later development of HCC in 
humans [80, 81].

3.6  �GSH and Transsulfuration in Cancer Biology 
and Alcohol-Related Cancers

GSH appears to play a paradoxical role in cancer biology. Firstly, oxidative stress 
due to production of ROS and/or electrophilic metabolites is an important muta-
genic mechanism for numerous physical (e.g., ultraviolet light exposure) and chem-
ical (e.g., alcohol) carcinogens [82–84]. GSH scavenges DNA-damaging free 
radicals directly or via enzymatic reactions (e.g., GPXs and GSTs), and in doing so, 
it may contribute to the prevention of tumor initiation [85, 86]. Secondly, some 
oncogenes (e.g., AP-1) and tumor suppressors (e.g., P53) are transcription factors 
that play key roles in controlling cell proliferation and death in response to genomic 

3  Glutathione and Transsulfuration in Alcohol-Associated Tissue Injury…



46

stress. The DNA-binding activity of these proteins requires the maintenance of 
some crucial cysteine residues in a reduced form [87, 88]. By acting as a major 
homeostatic redox buffer in subcellular compartments, GSH-GSSG couple may 
modulate the activities of tumor suppressors or oncoproteins, thereby contributing 
to tumor promotion [89]. Thirdly, many highly metastatic cancer cells attain high 
intracellular levels of GSH; such a situation is typically associated with higher 
expressions of γ-glutamyl cycle enzymes, such as GCL and GGT [90–92]. These 
biochemical features are believed to function at multiple levels to promote the 
growth advantage and metastasis of neoplastic cells, such as: (a) the γ-glutamyl 
cycle supplies the fast turnover of cysteine and other amino acids for protein synthe-
sis, (b) high GSH helps to maintain mitochondrial functional integrity to meet the 
high metabolic demands of the neoplastic cells, and (c) GSH combats harmful ROS 
or reactive nitrogen species (RNS) released by vascular endothelial cells in response 
to cancer cell contact in the process of metastatic invasion. Lastly, resistance of 
cancer cells to radiation and chemotherapy appears to correlate directly to their 
GSH levels. This is often accompanied by over-expression of multidrug resistance-
associated proteins (MRPs) and GST enzymes [93–96]. Several mechanisms have 
been proposed for the role of GSH in regulating drug resistance of cancer cells: (a) 
GSH may directly protect against oxidative cytotoxicities elicited by anti-cancer 
treatments, (b) MRPs are a family of ATP-binding cassette membrane transporters 
that mediate the efflux of GSH and GSH-conjugates; GSH may facilitate the export 
of anti-cancer drugs through the actions of MRP proteins, and (c) GSTs are phase II 
detoxification enzymes that catalyze GSH conjugation with different chemothera-
peutic compounds for their safe elimination; GSH may promote GST-mediated 
metabolic elimination of anti-cancer drugs by serving as its cofactor. The latter two 
mechanisms may act independently or cooperatively to diminish the therapeutic 
effects of anticancer drugs in cancer cells expressing high levels of GSH. Taken 
together, GSH seems to have bidirectional functions such that it can protect against 
neoplastic transformation in non-tumor cells while also being able to promote 
metastasis and chemoresistance of neoplastic cells.

Deficiencies in the transsulfuration pathway have been documented to occur in 
cancer cells and cancerous tissues [23]. Genetic polymorphisms in the CBS gene 
(which encodes the enzyme converting homocysteine to cystathionine) have been 
associated with increased risks for breast, gastrointestinal and lung cancers [97–99]. 
The importance of the transsulfuration pathway in cancer biology attributes par-
tially to its metabolic link to the metabolism of cysteine and GSH [23]. The trans-
sulfuration pathway also connects to the methionine cycle through homocysteine. A 
blockade of this pathway results in homocysteine accumulation as well as altered 
cellular transmethylation [23], both of which have been implicated in tumor initia-
tion and progression. Homocysteine is a pro-inflammatory intermediate that causes 
ROS production, cytokine release, and altered expression of adhesion molecules 
[100]. Elevated levels of homocysteine induce chronic inflammation and are an 
established risk factor for coronary heart disease [28]. Many tumor cells both 
require high methionine for growth and export large amounts of homocysteine 
[101]. The elevated production of homocysteine by methionine-dependent cancer 
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cells is proposed to act as an adaptive mechanism that promotes a cancer microen-
vironment for cancer cell survival, colonization and vascular invasion [102, 103]. In 
the methionine cycle, accumulated homocysteine can be converted to SAH that, as 
a potent inhibitor of cellular methylation, can lead to SAM deficiency [104]. In 
agreement with this notion, aberrant DNA methylation is often observed in 
hyperhomocysteinemia-associated pathologies (including cancer) and is considered 
an important causal factor of the disease condition [104].

In the context of alcohol-related cancer, ethanol-induced depletion of the cellular 
GSH pool and inhibition of transsulfuration/transmethylation pathways are of par-
ticular importance for the development of alcoholic HCC. Clinically, low levels of 
hepatocellular GSH and SAM and a low SAM/SAH ratio are commonly observed 
in chronic alcoholics with advanced stage ALD and they correlate with the severity 
of liver damage [32, 37, 38]. The significance of reduced SAM production in the 
development of HCC is supported by several findings: SAM feeding blocked the 
transformation of pre-neoplastic lesions into HCCs [105], SAM administration 
inhibited the expressions of selected proto-oncogenes [106], SAM decreased the 
survival of liver tumor cells in vitro in a dose-dependent manner [107], and SAM 
treatment prevented liver tumor formation in a xenograft model [108]. The proposed 
mechanisms underlying a protective role of SAM against alcoholic HCC, including 
providing precursors for GSH biosynthesis and supplying methyl groups for bal-
anced DNA methylation, are presented and discussed comprehensively in other 
articles [109, 110].

Along with abstinence from alcohol and anti-inflammatory treatment, nutrient 
(e.g., SAM) and antioxidants (e.g., GSH) supplementation represents an important 
element for preventive and therapeutic management of ALD including cancer [111, 
112]. The use of GSH precursors (e.g., N-acetylcysteine) [113, 114], intermediates 
of transmethylation pathway (e.g., SAM, folate and betaine) [110] and compounds 
possessing antioxidant properties (e.g. vitamin E and plant extracts) [115, 116] have 
been investigated in experimental animal models and pilot human studies targeting 
at advanced ALD. These studies have provided inconsistent results in that human 
studies largely showed no beneficial effects in improving clinical markers of chronic 
liver damage or preventing degeneration into hepatocellular carcinoma [117, 118]. 
However, the lack of therapeutic efficacy of these compounds may be related to 
their complex pharmacokinetics in ALD patients. Nevertheless, it has been pro-
posed that long-term use of antioxidants (including SAM) may assume a greater 
role for the treatment of ALD patients who are in the process of achieving sobriety 
and at risk for progression to cirrhosis and HCC.

3.7  �Concluding Remarks

Individuals who abuse alcohol on a chronic basis are predisposed to the development 
of numerous diseases including cancer. GSH is a ubiquitous tripeptide that functions 
as a major cellular antioxidant and redox-buffering molecule. The transsulfuration 
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pathway metabolically connects GSH biosynthesis with cellular transmethylation. 
Chronic alcohol consumption results in depletion of the cellular GSH pool and 
inhibition of cellular transsulfuration/transmethylation, which are key pathogenic 
events involved in alcohol-associated tissue injury and carcinogenesis. Molecular 
details of these processes are yet to be defined. Therapeutic strategies targeted at 
improving these metabolic changes are inconclusive and warrant further studies.
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