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Glutathione (GSH), often referred to as “the master antioxidant,” participates not only in
antioxidant defense systems, but many metabolic processes, and therefore its role
cannot be overstated. GSH deficiency causes cellular risk for oxidative damage and
thus as expected, GSH imbalance is observed in a wide range of pathological condi-
tions including tuberculosis (TB), HIV, diabetes, cancer, and aging. Consequently, it is
not surprising that GSH has attracted the attention of biological researchers and phar-
macologists alike as a possible target for medical intervention. Here, we discuss the role
GSH plays amongst these pathological conditions to illuminate how it can be used as a
marker for human disease.
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1. INTRODUCTION

The biological antioxidant glutathione (GSH) is present in virtually all
mammalian tissues and participates in many essential aspects of cellular
homeostasis. GSH is a pleiotropic tripeptide composed of the amino acids
glycine, cysteine and glutamic acid. Its synthesis is largely regulated by the
available quantity of antecedent cysteine and the total concentration of
GSH present, which negatively feedbacks on the enzymes that regulate its
synthesis [1]. GSH is synthesized in a two-step ATP dependent process
catalyzed by glutamylcysteine synthase (GCL) and glutathione synthase
(GSS) (Fig. 1) [2]. In the first step, GLCL forms a peptide bond between
glutamate and cysteine, glycine is then added with the enzymatic support
of GSS (Fig. 1) [3].

GSH is the most abundant non-protein intracellular thiol, present in
millimolar concentrations (Table 1). The active thiol group is present as
part of the cysteine residue and participates in antioxidant functioning either
directly by detoxifying reactive oxygen species (ROS) and reactive nitrogen
species (RNS) or indirectly via GSH-dependent peroxidase-catalyzed
reactions [4]. Thus, GSH participates in many important detoxification
reactions and has a high capacity for the prevention of oxidative stress-
induced cellular damage. Therefore, the intracellular redox state character-
ized by the levels and ratio of oxidized (GSSG) and reduced (GSH)
glutathione is considered to be an important indication of cellular health.
This is largely because GSSG, is toxic and therefore must be rapidly
Figure 1 GSH synthesis pathways



Table 1 Human Intracellular Thiols
Thiol Name Subcellular Localization Concentration Antioxidant

Cysteine (Cys) Cytoplasm, Mitochondria 212 � 23 mM Yes
Cysteinylglycine
(CysGly)

Cytoplasm 65.7 � 4.6 mM Yes

Homocysteine (Hcys) Cytoplasm 9.4 � 7.3 mM No
Glutathione (GSH) Cytoplasm, Mitochondria,

Endoplasmic- reticulum
1e10 mM Yes
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converted back into GSH by the enzyme glutathione reductase (GSR).
Subsequently, the ratio of GSSG to GSH under non-pathological conditions
is typically about 1% [5].

While an increase in GSH seems to be a universal cellular response to
oxidative stress, some diseases appear to be exacerbated by decreased GSH
levels. About 10%e15% of intracellular GSH is located within mitochon-
dria, and dysfunction of the mitochondrial electron transport chain is often
associated with abnormally low levels of GSH [6]. Consequently, mitochon-
drial GSH depletion will archetypically lead to increased levels of ROS, and
categorical ATP depletion. As a consequence, cells may alter their prototyp-
ical apoptotic response in favor of necrosis [7]. Other than conditions
associated with mitochondrial impairment, various additional diseases are
also associated with dysregulated GSH synthesis or alterations in its concen-
tration. Diminished GSH expression has been demonstrated a common
feature among numerous pathological conditions including: diabetes,
cancer, HIV, liver diseases, TB, uremia, pulmonary fibrosis, Friedreich
ataxia, Alzheimer disease, Parkinson disease, amyotropic lateral sclerosis,
and Rett syndrome (Table 2) [8e17]. Therefore, this article reviews various
pathological conditions caused due to dysregulated levels of GSH which can
have potential applications as a marker for human disease.

2. THE GLUTAMYLCYSTEINE SYNTHASE ENZYME

GCL is the rate limiting enzyme in the GSH synthesis pathway [18].
GCL comprises of the catalytic subunit (GCLC) and the modulating
subunit, GCLM, and is responsible for linking glutamate and cysteine
together to form geglutamylcysteine [19]. GCL deficiency has been
implicated in hemolytic anemia, a disease in which red blood cells are
prematurely destroyed and removed from the body [20e22]. Additionally,
cholestasis, a disease that alters the flow of bile from the liver, has been
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Table 2 Conditions With Altered GSH Concentrations
Condition GSH Levels

Parkinson’s Disease Low
Alzheimer’s Disease Low
Friedreich Ataxia Low
Rett Syndrome Low
Myocardial Infarction Low
Cancer Low
HIV Low
Ageing Low
Pulmonary Fibrosis Low
Uremia Low
Tuberculosis Low
Rheumatoid Arthritis Low
Type 2 Diabetes Mellitus Low
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connected to decreased GCL levels [23]. Furthermore, after the research
group restored the levels of GCL with ursodeoxycholic acid treatment,
they observed notable disease regression [23]. In Diabetes Mellitus, GCL
expression has been shown to be mediated by insulin release aiding in the
protective effects against hyperglycemia induced apoptosis [24]. Although
the exact mechanism has not yet been established, individuals suffering
from alcoholic liver disease also show a marked decrease in GCL levels
[25]. Additionally, it has also been demonstrated that patients going through
dialysis due to uremia often present decreased levels of GSH, which is
thought to be attributed to the diminished levels of GCL amongst these
patients as well [8].

3. NRF2’S RELATION TO GLUTATHIONE VIA
ANTIOXIDANT RESPONSE ELEMENTS
Compromised levels of GSH can be an important indicator of disease
due to its significance in maintaining redox balance throughout the body. As
ROS levels increase during metabolism and immune responses, antioxidant
levels such as GSH, must likewise, escalate to compensate. Therefore, to
ensure optimal levels of GSH, there needs to be upstream regulators to
increase or decrease de novo synthesis and recycling of the molecule [26e
28]. One of the most important of these antioxidant regulators is nuclear
factor E2-related factor 2 (Nrf 2).
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Nrf 2 is a transcription factor associated with the antioxidant response
element (ARE), promoter region of various genes coding for antioxidant-
associated enzymes [28]. At redox equilibrium, Nrf 2 is restricted to the
cytoplasm of cells by Kelch-like ECH-associated protein 1 (Keap1).
Keap1, an E3 ubiquitin, facilitates proteasome-dependent degradation of
Nrf 2 [29e31]. Thus, in redox equilibrium, this mechanism prevents Nrf 2
from enhancing the transcription of antioxidant-associated enzymes.
However, during oxidative stress, Keap1’s dissociation from Nrf 2 is favored
by various Keap1 inhibitors. Once dissociated from Keap1, Nrf 2 is allowed
to translocate into the nucleus of the cell and bind to the ARE of antioxi-
dant-associated gene promoters [32e35]. The subsequent increase in
transcription will consequently upregulate antioxidant levels, such as
GSH, to re-establish the redox equilibrium. In a state of inflammation or
disease, ROS levels will likely be elevated higher than normal. Subsequent
to this systemic redox imbalance, Nrf 2 will be allowed to translocate into
the nucleus and promote transcription of GCL, GSS, and GSR, which
will in turn not only increase the de novo synthesis of GSH but also increase
the recycling of GSSG to GSH [36].

Although the Nrf 2 pathway is a key component of oxidative relief, it is
not the sole contributor, and thus must also be regulated. Other antioxidants
such as Vitamin C, negatively correlate with and dictate the levels of intra-
cellular Nrf 2 [35]. Vitamin C has been shown to interrupt the localization of
Nrf 2 to the nucleus, preventing ARE binding. This leads to an increase in
ubiquitin-mediated degradation of the transcription factor, and a subsequent
reduction in the transcription of antioxidant-related intermediaries [37].
Therefore, the inhibition of the Nrf 2 pathway ultimately modulates the
levels of GSH production.

4. GLUTATHIONE RELATION TO VITAMIN D

Vitamins are a form of micronutrient needed for regular biological
functionality. Vitamin deficiency will often lead to increased susceptibility
to medical conditions such as TB, cardiovascular disease, and even cancer.
Historically, Vitamin C and Vitamin D were used during the pre-antibiotic
era to help treat myriad medical conditions. Recently however, vitamins
have been re-investigated to further understand their potentiality in disease
acquisition and prevention.

Vitamin D, a fat-soluble molecule, is used to regulate calcium and phos-
phate metabolism. While Vitamin D itself does not possess any direct
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antimicrobial mechanisms it can however, modulate host defense machin-
ery, inflammation, and repair through two suggested mechanisms. The first
mechanism suggests Toll-like Receptor (TLR) mediate the upregulation of
the Vitamin D receptor (VDR) allowing for activated macrophages to pro-
duce the active form of Vitamin D, 1,25-dihydroxy vitamin D (DHVD)
[38e40]. As a result, DHVD will interact with VDR and activate the anti-
microbial peptide cathelicidin [38e40]. In addition, DHVD enhances intra-
cellular GSH quantities and significantly reduces nitrite production induced
by lipopolysaccharides [41]. DHVD has been reported to inhibit the synthe-
sis of inducible nitric oxide synthase (iNOS), an enzyme induced during
various diseases, such as AIDS and infections [42]. Vitamin D is an important
factor in the upregulation of GSH pools as well. The specific activity of
gamma-glutamyl transpeptidase (gamma-GT), an enzyme involved in
GSH metabolism, is also regulated by DHVD [41]. The second proposed
antimicrobial mechanism is that Vitamin D can downregulate tryptophan-
aspartate-phagosome coat protein (TACO). TACO permits infectious
agents such as Mycobacterium tuberculosis (M. tb) to avoid phagolysosomal
fusion within macrophages [43]. The result of Vitamin D regulated
TACO downregulation thus promotes intracellular pathogenic degradation
via increased lysosomal fusion with infested phagosomes. Furthermore,
recent research suggests Vitamin D can upregulate GCLC and GSR produc-
tion, thereby enzymatically eliciting the upregulation of GSH biosynthesis
[44]. Therefore, not only is Vitamin D a beneficial micronutrient in regards
to parthenogenic diseases and infections, it also upregulates levels of available
and usable GSH as well.

5. GLUTATHIONE’S ROLE IN TUBERCULOSIS

It is reported that GSH levels are significantly diminished among the
peripheral blood mononuclear cells (PBMCs) and red blood cells (RBCs) of
individuals with pulmonary tuberculosis (TB) compared to their healthy
counterparts [45]. This decrease in GSH is also significantly correlated
with increased levels of free radicals, production of pro-inflammatory cyto-
kines and intracellular M. tb viability [36,46e50]. GSH possesses direct
anti-mycobacterial effects which assists in infection control [46]. It is well
established that macrophages are the major innate immune cell type respon-
sible for combating anM. tb infection. Once macrophages are activated, they
release antimicrobial molecules such as RNS, which is toxic toM. tb. Nitric
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oxide (NO), an essential member of the RNS family has been shown to
significantly inhibit M. tb growth, however, its activity is short lived as it
becomes detoxified rapidly [51e55]. Interestingly, GSH can become a
carrier molecule for NO by forming S-nitrosoglutathione (GSNO), which
previous studies have demonstrated has direct mycobactericidal effects
[56e58].

Natural killer (NK) cells perform a critical role in the innate immune
response to intracellular bacterial infections, especially M. tb. Research has
shown that the cytolytic activity of NK cells can become critically impaired
due to low levels of GSH [59,60]. Studies have also demonstrated that NK
cells treated with N-acetyl cysteine (NAC), a precursor molecule to GSH
synthesis, can cause significant recovery of cytolytic activity, which indicates
that GSH plays an important role in enhancing NK functionality against M.
tb [59,60].

GSH has been shown to modulate cytokine profile expression [45,60e
63]. It has been reported that the in vitro treatment of whole blood with
NAC results in increased IFN-g production, thereby enhancing the Th1
cell response against M. tb [64e66]. Studies have demonstrated that higher
Th1 and lower Th2 responses help control M. tb growth [65,67e69].
This indicates that intracellular GSH levels are important in modulating
Th1 cytokines and aid in M. tb clearance.

Dendritic cells (DCs) are potent antigen presenting cells (APCs) which
act as a bridge between innate and adaptive immunity. GSH has also been
revealed to play a role in promoting DC maturation. Experimental evidence
from murine model suggests that the down regulation of GSH results in
decreased IL-12 production by DCs [70]. IL-27 another cytokine released
by DCs is responsible for native T-cells differentiation. It has been indicated
that there is a correlation between the intracellular levels of GSH and the
production of IL-27 [71]. Accordingly, GSH can regulate many cytokines
and cell types in response to an M. tb infection.

6. GLUTATHIONE DEFICIENCY AMONG HIV INFECTED
INDIVIDUALS
HIV-mediated immune suppression increases susceptibility to acquiring
opportunistic infections, one of which being TB. According to the World
Health Organization, the risk of developing TB is estimated to be anywhere
from 16 to 27 times greater in people living with HIV than among those
without HIV infection [72]. TB is the most common illness presented
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among individuals living with HIV [73]. This phenomenon is especially
evident in developing countries where the rate of HIV infection is signifi-
cant. There were an estimated 1.2 million new TB cases among HIV
positive individuals, in 2014, and roughly 74% of these individuals live in
sub-Saharan Africa [73]. There is also an increased risk of developing
drug-resistant TB among individuals living with an HIV co-infection
[73]. An adequate response to TB requires functioning host defense mech-
anisms. HIV primarily targets host CD4þ T cells and macrophages, resulting
in immune suppression, characterized by gradually decreasing CD4 T cell
counts.

One of the mechanisms associated with this immunosuppression is a
decrease in the levels of GSH. Studies have shown that the levels of GSH
are significantly compromised in the immune cells derived from the periph-
eral blood of HIV-infected individuals [46,48,51,64,68,74,79]. This
decrease in the levels of GSH was also shown to correlate with increased
intracellular M. tb survival [46,48,51,64,68,74,79]. Similar findings i.e.,
diminished levels of GSH were noted upon analysis of brain tissue isolated
from HIV-infected individuals [74]. The proposed mechanism for this
decrease in GSH levels is a decline in the levels of enzymes involved in
the synthesis of GSH [51]. With decreased levels of GSH, an HIV infected
individual has an increased risk for developing an active M. tb infection.
Additionally, significant decreases have been observed in the levels of
immune-stimulatory cytokines (IL-2, IL-12, and IFN-g) as well as increased
levels of immune-suppressing cytokines (TGF-b, IL-6, IL-10) among
HIV-positive individuals [64]. Furthermore, liposomal GSH (Readisorb)
supplementation for 3 months resulted in restoration in the levels of
immune-stimulatory and a significant decrease in the levels of immune-
suppressing cytokines among these individuals [64]. Furthermore, another
recentstudy demonstrated that liposomal GSH supplementation in AIDS
patients can restore redox and cytokine balance thereby improving their
immune functionality [75].

7. GLUTATHIONE DEFICIENCY AMONG DIABETIC
INDIVIDUALS
The incidence of diabetes has increased worldwide due to population
ageing, urbanization, changes in diet and reduced physical activity patterns
resulting in obesity, especially in populations where TB is most prevalent
[76]. Diabetes is the leading worldwide cause of blindness, end-stage renal
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diseases, and amputations, as well as macrovascular complications including
myocardial ischemia and strokes. A common feature of these pathways that
mediate tissue damage is increased oxidative stress marked by elevated levels
of ROS [77].

Oxidative stress and ROS formation are significantly increased by
uncontrolled hyperglycemia [78]. A characterization of diabetes mellitus
includes hyperglycemia caused by insulin resistance, which accounts for
roughly 90%e95% of the total prevalence of diabetes [79]. There is growing
evidence that diabetes mellitus is an important risk factor for TB and might
affect disease presentation and treatment response [80]. Individuals with
Type 2 Diabetes Mellitus (T2DM) have three times the risk of developing
TB, and there are now more individuals with TB-T2DM co-morbidity
than TB-HIV co-infection [81,82].

These conditions point to a compromised immune system, and patient
predisposition to infections for which cell-mediated immunity has a pivotal
role. Decreased levels of GSH is likewise, associated with diabetes.

8. GLUTATHIONE DEFICIENCY AS A RESULT OF
AGEING
Ageing is characterized as the gradual dysfunction of molecular and
cellular mechanisms that culminate in diminished physiological functioning
and an increased susceptibility to disease [83e85]. Mitochondrial dysfunc-
tion is a hallmark of the ageing process that is associated with an increase
in oxidative stress and a decrease in antimicrobial defenses [83,86e89].
Mitochondrial capacity to mitigate damage due to oxidative stress and atten-
uate microbial invasion is dependent upon its ability to produce endogenous
antioxidants, among which GSH is the most abundant [87]. However,
intracellular GSH concentrations have been shown to decline with age
[90e93]. Therefore, GSH deficiency can potentiate the underlying mech-
anisms which contribute to the age-induced elevation of oxidative stress
as well as increased susceptibility to microbial infections [87,93].

Evidence suggests that the GSH deficiency which occurs in ageing cells is
attributed to a lack of GSH precursor amino acids, cysteine and glycine
[85,90,93]. This implies that the decreased availability of cysteine and
glycine is a potential consequence of the deceleration of the overall protein
turnover which occurs with ageing [94]. However, the exact metabolic
mechanisms responsible for the diminished concentrations of non-essential
amino acids among ageing cells is not fully understood and needs further
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elucidation. Additionally, GCL experiences a decrease in its affinity
(increased Km) for its cognate substrates due to an age-related accumulation
of homocysteine, a toxic trans-sulfuration/GSH biosynthesis pathway inter-
mediate [85]. Consequently, the combination of the age-related deficiency
of GSH precursors and a loss in GCL catalytic activity results in a reduction
of de novo GSH biosynthesis which ultimately inhibits mitochondrial
defense. Thus, ageing cells which synthesize inadequate amounts of GSH
will experience irreversible cell damage in consequence [87,93]. Further-
more, studies have shown that inducing an acute GSH deficiency can not
only causes mitochondrial damage but ultimately result in cell death,
substantiating the protective role of GSH among aging cells [95,96].

In addition to elevated oxidative stress, ageing is associated with an
altered abundance of circulating inflammatory cytokines, immune cell
dysfunction, and impaired microbial clearance mechanisms [89,97,98].
Collectively, these cellular changes contribute to an age-related decline in
immune cell response to microorganisms, such asM. tb [89]. Due to a dimi-
nution in T cell and macrophage functioning, ageing correlates with an
increased risk of developing TB stemming from primary infection or from
reactivation of a latent infection [87]. Given the abundance of evidence
substantiating the role of GSH in mediating an M. tb infection, the natural
age-related deficiency of GSH is a plausible explanation for the increased
susceptibility to TB among the elderly.

9. SMOKING RELATION TO GLUTATHIONE DEPLETION
AND CANCER SUSCEPTIBILITY
Cigarette smoking still remains the leading avoidable cause of
morbidity and mortality and is attributed to roughly 12% of global deaths
among adults aged 30 years and over [99]. Moreover, cigarette smoke
(CS) is credited as a top risk factor for cancer, cardiovascular disease, and
respiratory diseases [99e101]. Inhaled CS induces oxidant imbalance by
release of free radicals, ROS, and RNS in the lungs. These oxidative agents
have the capacity to overwhelm the normal redox balance, causing decreases
in antioxidant levels which promotes more oxidative stress and eventually
tissue damage [102]. Additionally, CS in combination with low levels of
GSH has also been shown to increase pro-inflammatory cytokine synthesis
[103]. GSH in lung epithelial tissue is among the first-line defenses against a
large number of the reactive species found in CS [103]. Long term tobacco
exposure can cause GSH levels in multiple tissues to become significantly
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decreased, leaving the individual susceptible to a myriad of illnesses
including M. tb infection and cancer [48,103,104].

Total glutathione (TGSH) levels, which includes GSSG, are higher
among individuals who smoke as is an increase in GSH peroxidase activity.
This suggests a greater demand for GSH to sacrifice itself into GSSG, hence
the elevated amounts of TGSH [105]. In young smokers, below age 50,
adaptive compensation allows for GSH levels to respond by upregulating
to meet the oxidative demand in response to CS. However, as aforemen-
tioned, older individuals experience a significant depletion in GSH with
age and are more susceptible to the adverse effects caused by CS. Once
endogenous protective mechanisms are compromised such as the depletion
of GSH, cells are left vulnerable to damage and infections. After being
engulfed by macrophages, cell mediated immunity is important for prevent-
ing an activeM. tb infection, and any conditions which weaken the immune
system cause greater susceptibility to opportunistic pathogens including M.
tb [106]. An estimated 7% of all deaths due to TB can be attributed to the
effects of tobacco [99].

In addition to the role GSH levels have in regard to tobacco related sus-
ceptibility to M. tb infection, it is also implicated in cancer susceptibility as
well [99e101]. In Hepatocellular Carcinoma (HCC) GSH acts as an endog-
enous mitochondrial antioxidant by scavenging ROS in order to maintain a
balanced mitochondrial redox state. Additionally, CS and nicotine can upre-
gulate the activity of CYP2E, a metabolic liver enzyme whose induction is
also associated with ROS generation [104]. Long term tobacco exposure
decreases hepatic GSH, which increases the likelihood of developing
HCC [104]. Accordingly, an improper redox state due to decreased levels
of GSH can lead to carcinogenesis.

10. CURRENT GLUTATHIONE DETECTION METHODS

In vivo detection of GSH has been demonstrated in a variety of ways.
One of these methods involves measuring the levels of GSH within the
brain by proton (1H) magnetic resonance spectroscopy (MRS). Due to
overlap of 1H resonance peaks of GSH in addition, to other metabolites,
spectral editing techniques such as J-difference spectroscopy, point-resolved
spectroscopy localization sequence (PRESS), MEshcher-GArwood-PRESS
(MEGA-PRESS), and double quantum coherence filtering (DQF) have
been developed to allow for more reliable quantification of GSH [107e
110]. Furthermore, the linear combination model (LCModel) analysis
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provides an unbiased quantification of signal contribution from such editing
[111]. The quality of DQF combined with PRESS is thought to be less
sensitive to patient motion as it utilizes a single shot nature in contrast to
DQF alone, J-difference spectroscopy, and MEGA-PRESS [110]. MRS
imaging detection of stable isotope-labeled GSH has also been used to track
GSH metabolism and heterogeneity within tumor tissue following infusion
of [2e13C] glycine in rats [112]. Electron paramagnetic resonance imaging
is another imaging technique that has been utilized for the detection of GSH
through a redox map with the use of a nitroxide imaging probe, 3-methox-
ycarbonyl-2,2,5,5-tetramethyl-piperidine-1-oxyl (MCP) [113]. In the pres-
ence of ascorbates, GSH increases the ascorbate-induced reduction of
nitroxides, and therefore GSH levels can be estimated [113]. Another
method involved in the in vivo detection of GSH is through the use of a
galactose-appended naphthalimide, a targetable ligand for hepatic thiol
imaging through its display of a fluorescence emission feature that is induced
by exposure to free endogenous GSH [114]. Similar to the highly sensitive
in vitro biosensor of GSSG in plasma samples, the in vivo biosensor of GSSG
was developed using glutathione reductase (GR) and NADPH immobilized
onto a nanocomposite conducting polymer film and inserted into the liver
of rats. While this method requires incision and insertion within the liver, it
has attractive features in that this detection method does not require a
specific label and is relatively cost efficient [115]. Finally, polymerase chain
reaction-restriction fragment length polymorphism (PCR-RFLP) has been
used to detect single nucleotide polymorphisms of the glutamate-cysteine
ligase subunit catalytic (GCLC) gene, particularly 129C/T, which has
been reported to have an association with an increased risk factor for oxida-
tive stress [116].

11. CONCLUSION

GSH depletion contributes to pro-inflammatory cytokine release, free
radical formation, inhibition of macrophage and natural killer cell function-
ality along with disease susceptibility and progression. Furthermore, GSH
can regulate a vast array of cytokines and other biological molecules related
to the immune system. It is evident that GSH participates in numerous intra-
cellular homeostatic roles and thus, its use as a biomarker has tremendous
potential. Therefore, further investigation should be pursued to evaluate
GSH as an early detection method for human disease and pathology.
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